Multispectral image denoising with optimized vector non-local mean filter
نویسندگان
چکیده
Nowadays, many applications rely on images of high quality to ensure good performance in conducting their tasks. However, noise goes against this objective as it is an unavoidable issue in most applications. Therefore, it is essential to develop techniques to attenuate the impact of noise, while maintaining the integrity of relevant information in images. We propose in this work to extend the application of the Non-Local Means filter (NLM) to the vector case and apply it for denoising multispectral images. The objective is to benefit from the additional information brought by multispectral imaging systems. The NLM filter exploits the redundancy of information in an image to remove noise. A restored pixel is a weighted average of all pixels in the image. In our contribution, we propose an optimization framework where we dynamically fine tune the NLM filter parameters and attenuate its computational complexity by considering only pixels which are most similar to each other in computing a restored pixel. Filter parameters are optimized using Stein’s Unbiased Risk Estimator (SURE) rather than using ad hoc means. Experiments have been conducted on multispectral images corrupted with additive white Gaussian noise and PSNR and similarity comparison with other approaches are provided to illustrate the efficiency of our approach in terms of both denoising performance and computation complexity.
منابع مشابه
Multichannel and Multispectral Image Restoration Employing Fuzzy Theory and Directional Techniques
Satellite, Radar, Medical, High Definition Television, Virtual Reality, Electron Microscopy, etc. are some of the multispectral and multichannel image processing applications that need the restoration and denoising procedures, all these applications are part of a general image processing system scheme. All these images usually are corrupted by noise due to sensors influence, during transmission...
متن کاملA Robust Image Denoising Technique in the Contourlet Transform Domain
The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...
متن کاملA New Shearlet Framework for Image Denoising
Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کاملPerformance Tuning for CUDA - Accelerated Neighborhood Denoising Filters
Ziyi Zheng and Klaus Mueller are with the Center for Visual Computing, Computer Science, Stony Brook University, Stony Brook, NY 11790 USA (phone: 631-632-1524; e-mail: {zizhen, mueller}@cs.sunysb.edu). Funding was provided by NSF grant EAGER 1050477. Abstract—Neighborhood denoising filters are powerful techniques in image processing and can effectively enhance the image quality in CT reconstru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Digital Signal Processing
دوره 58 شماره
صفحات -
تاریخ انتشار 2016